

FPBGSA Stakeholder Workshop 3

Groundwater Model and Water Budget

Senior Groundwater Modeler Jason Sun, PhD, PE December 9, 2020

Expert Panel Review

• Historical Water Budget

•GW Model Water Budget

Expert Panel History

- In spring 2016, the UWCD model was making progress. The Groundwater Department decided to hire external experts to review the UWCD model while the model was being calibrated
- Several rounds of reviews took place in 2016, 2017 and 2018
- UWCD released the 2018 UWCD model in July 2018
- UWCD expanded the 2018 model into the river basins in 2019-2020
- The expert panel reviewed the 2020 UWCD model in March, June and August 2020

Expert Panel

- Sorab Panday, Ph.D.
 - Member of the National Academy of Engineering (NAE)
 - Lead author of MODFLOW-USG
 - USGS MODFLOW development
- Jim Rumbaugh
 - Co-author of a popular MODFLOW GUI software, Groundwater Vistas
 - Exposed to numerous groundwater models in U.S.
- John Porcello, Registered Geologist

Developed groundwater models in the western United States. Developed groundwater models in Santa Clarita area

Expert Panel Review Process

- UWCD staff gave presentations to the panel on the model development
- UWCD provided:

Conceptual model information All the data including water level, pumping records,... Numerical MODFLOW model input and output files

- The panel spent days to weeks to pore through the GW model in each review
- Expert panel reviewed the model documentation
- Expert panel will continue to review the UWCD model in the future.

Goals

Model construction

Boundary conditions, stresses (pumping, recharge,...), grid spacing, time steps, numerical convergence,...

Model calibration

Water level residuals, spatial biases, water level over time,...

• Defensible model

Consistent with industry practice Appropriate use of MODFLOW packages Consistent with the conceptual model Good calibration

External Panel Review

- The expert panel concludes that "... finds the 2018 model to be a well-designed and well-calibrated tool,...provides a newly robust and detailed method of evaluating how the multiple aquifers in the region behave...
- The expert panel concludes that "... The 2020 model calibration to both heads and stream flows is very good, especially considering the size of the model grid cells compared to stream dimension in these three basins that have been added to the model ... the three of us believe that the model replicates the historically observed conditions quite well during the calibration period. Accordingly, the United Water District team should feel proud of the current model. "

UWCD Model is Battle-Tested

- The UWCD models have been reviewed internally by UWCD surface water hydrologists and hydrogeologists
- The UWCD models have been reviewed externally by an expert panel composed of nationally recognized modelers (Dr. Sorab Panday, Mr. Jim Rumbaugh, and John Porcello).
- The 2018 UWCD model was reviewed by Stanford professor, Dr. Daniel Tartakovsky
- The 2018 UWCD model was scrutinized in litigations

Historical Water Budget

- The historical water budget was INDEPENDENTLY reviewed and prepared by Dr. Zach Hanson
- The numerical groundwater model was built independently from the historical water budget

United Water Report Detailing Prior Investigations

- Summary of Past Groundwater Models and Water Budgets for the Piru, Fillmore, and Santa Paula Groundwater Basins
- Finalized November 2020
- PDF copy available on the FPBGSA website:
 - <u>https://www.fpbgsa.org/gsp/gsp-</u> tech-memos-and-documents/

SUMMARY OF PAST GROUNDWATER MODELS AND WATER BUDGETS FOR THE PIRU, FILLMORE, AND SANTA PAULA GROUNDWATER BASINS

> United Water Conservation District Open-File Report 2020-02 November 2020

WATER RESOURCES DEPARTMENT UNITED WATER CONSERVATION DISTRICT

THIS REPORT IS PRELIMINARY AND SUBJECT TO MODIFICATION BASED UPON FUTURE ANALYSIS AND EVALUATIONS

Range of Historical Water Budget Components

Majority of values extracted from: DWR (1956) or Mann (1959)

With other references being: CH2M HILL (2004, 2005) CH2M HILL/HGL (2008) LWA and others (2015) DBS&A and RCS (2017)

	Piru E	Basin	Fillmore	Basin
Budget Components (AFY)	Lower	Upper	Lower	Upper
Inflows				
Subsurface underflow	240	18,800	12,570	111,210
Stream Percolation	6,400	61,850	1,790	49,130
Precipitation Recharge	190	20,200	470	54,200
Mountain Front Recharge	2,620	2,620	3,530	3,530
Managed Recharge	0	11,800		
Local Wastewater Treatment Percolation Ponds	210	210	1,040	1,040
Imported	0	5,840	4,900	11,770
Outflows				
Subsurface underflow	12,570	111,210	3,900	30,910
Rising groundwater	0	37,800	6,030	48,200
Consumptive use*	6,450	15,000	20,590	36,200
Exported	2,200	6,450	0	5,160
Change in Groundwater Storage**	-19,600	44,600	-20,170	49,300

*Of applied water and precipitation on basin (including phreatophytes)

(Source: UWCD, 2020)

**Reported changes in annual storage (not calculated from inflows and outflows presented here)

Prior Investigations Historical Water Budget Components

Table E-1: Chronology of hydrologic investigations which contributed water budget components related to Santa Clara River Valley groundwater basins (Piru, Fillmore, and Santa Paula).

Entity	Year Published	Reference	Budget Components Provided?	Representative Years
California Department of Public Works, Division of Water Resource ¹	1933	DWR, 1933	All, various	1927 - 1932
California State Water Resources Board ¹	1956	DWR, 1956	All, various	1936 - 1951
John F. Mann and Associates	1959	Mann, 1959	All, various	1936 - 1957
California Department of Water Resources	1974	DWR, 1974a	Piru, subsurface inflow	1956 - 1967
Law/Crandall Inc.	1993	Law/Crandall, 1993	Fillmore, subsurface outflow	1956 - 1990
United States Geological Survey	2003	Reichard and others, 2003	Fillmore, subsurface outflow	1984 - 1993
CH2M HILL	2004	CH2M HILL, 2004	Piru, subsurface inflow	1980 - 1999
CH2M HILL	2005	CH2M HILL, 2005	Piru, subsurface inflow	1980 - 2005
CH2M HILL/ HydroGeoLogic Inc; HydroMetrics (United-sponsored analysis)	2008	CH2M HILL/ HGL, 2008	Piru and Fillmore, subsurface inflow	1975 - 2005
HydroMetrics (United-sponsored updates)	2015	LWA and others, 2015	All, various	1996 - 2012
Steve Bachman	2015	Bachman, 2015	Fillmore, subsurface outflow	1947 - 2014
Daniel B. Stephens and Associates, Inc/ Richard C. Slade and Associates LLC	2017	DBS&A and RCS, 2017	Fillmore and Santa Paula, various	1999 - 2012

¹One of the predecessor agencies to California's current Department of Water Resources (DWR). DWR was formed in 1956 with legislation that simultaneously dissolved the Water Project Authority and Division of Water Resources within the Department of Public Works as well as took over duties of a reconstituted State Water Resources Board (DWR, 2020). (Source: UWCD, 2020)

GW Model Water Budget

Piru basin

GW Model Water Budget

Historical Water Budget

Inflows	Average	Min	Max	Lower	Upper	Data Review
Subsurface underflow	5,000			240	18,800	Subsurface underflow
Stream Percolation	40,500	18,000	75,500	6,400	61,850	Stream Percolation
				0	37,800	Rising groundwater
Recharge	10,500	4,000	27,000	190	20,200	Precip Recharge
				0	11,800	Managed Recharge
Mountain Front Recharge	6,500	1,500	14,000	2,620	2,620	
Outflows						
Subsurface underflow	46,000	31,000	54,000	12,570	111,210	Subsurface underflow
Pumping	12,500	8,000	18,000	6,450	15,000	Consumptive use
ET	5,000	2,500	10,000			

Unit: ACRE-FEET ANNUALLY

Fillmore basin

GW Model Water Budget

Historical Water Budget

Inflows	Average	Min	Max	Lower	Upper	Data Review
Subsurface underflow	46,000	31,000	54,000	12,570	111,210	Subsurface underflow
Stream Percolation	1,500	-39,500	23,000	1,790	49,130	Stream Percolation
				6,030	48,200	Rising groundwater
Recharge	17,000	11,040	25,000	470	54,200	Precip Recharge
				1,040	1,040	WWTP Percolation
Mountain Front Recharge	8,000	3,000	14,500	3,530	3,530	
Outflows						
Subsurface underflow to SP	19,000	15,500	22,000	3,900	30,910	Subsurface underflow
Pumping	46,000	33,000	59,500	20,590	36,200	Consumptive use
ET	12,000	3,500	20,000			

Unit: ACRE-FEET ANNUALLY

Piru

Questions/ Comments

Inflows	Average	Min	Max	Lower	Upper	Data Review
Subsurface underflow	5,000			240	18,800	Subsurface underflow
Stream Percolation	40,500	18,000	75,500	6,400	61,850	Stream Percolation
				0	37,800	Rising groundwater
Recharge	10,500	4,000	27,000	190	20,200	Precip Recharge
				0	11,800	Managed Recharge
Mountain Front Recharge	6,500	1,500	14,000	2,620	2,620	
Outflows						
Subsurface underflow	46,000	31,000	54,000	12,570	111,210	Subsurface underflow
Pumping	12,500	8,000	18,000	6,450	15,000	Consumptive use
ET	5,000	2,500	10,000			

Fillmore

Inflows	Average	Min	Max	Lower	Upper	Data Review	
Subsurface underflow	46,000	31,000	54,000	12,570	111,210	Subsurface underflow	
Stream Percolation	1,500	-39,500	23,000	1,790	49,130	Stream Percolation	
				6,030	48,200	Rising groundwater	
Recharge	17,000	11,040	25,000	470	54,200	Precip Recharge	
				1,040	1,040	WWTP Percolation	
Mountain Front Recharge	8,000	3,000	14,500	3,530	3,530		
Outflows							
Subsurface underflow to SP	19,000	15,500	22,000	3,900	30,910	Subsurface underflow	
Pumping	46,000	33,000	59,500	20,590	36,200	Consumptive use	
ET	12,000	3,500	20,000				

FPBGSA Stakeholder Workshop 3

Groundwater Model Technical Session

Senior Groundwater Modeler

Jason Sun, PhD, PE

December 9, 2020

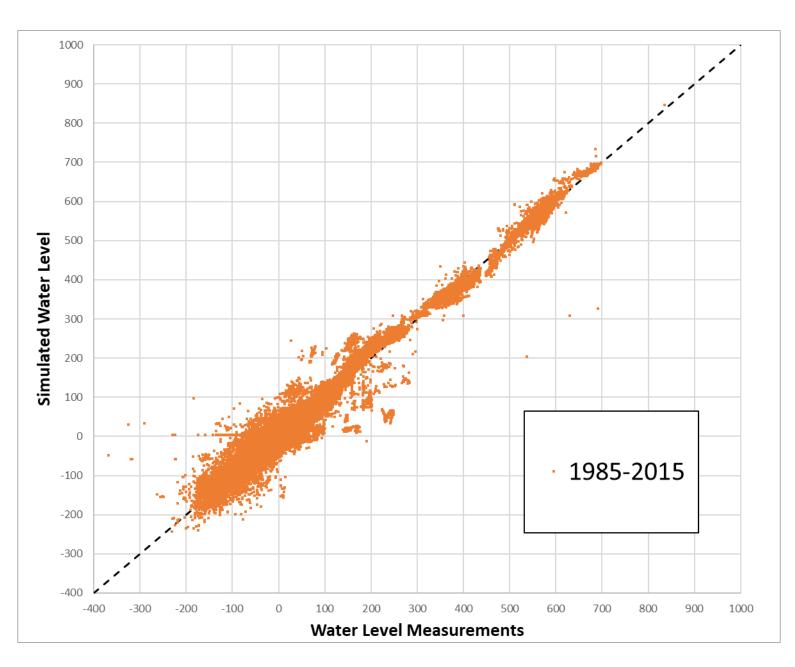
Model Validation

•Groundwater Model Input Parameters

2016-2019 Dataset

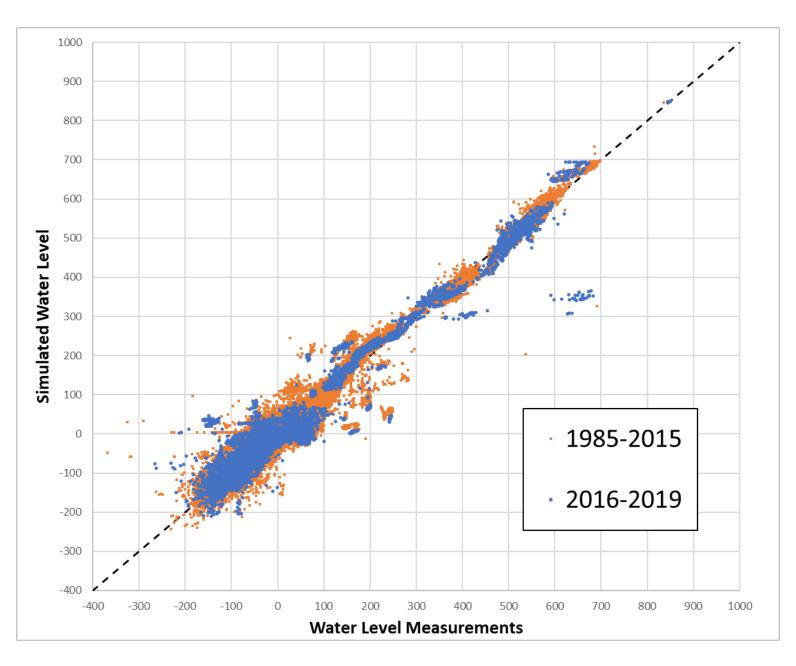
- Monthly precipitation data
- Pumping records
- Stream flow and diversions
- Surface water import/delivery
- Water level data
- WWTP discharges

The above data collection was made possible by Dr. Zach Hanson, FCGMA, cities, and other agencies/organizations

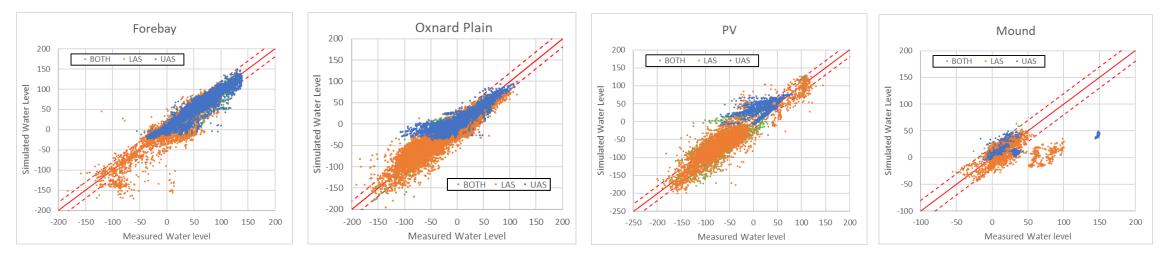

Model Validation

 The GW model remains well calibrated with the 2016-2019 groundwater level data

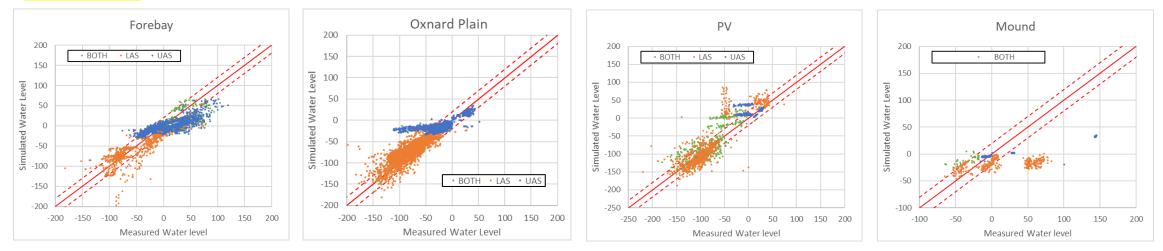
 The UWCD hydrologist has reviewed the surface water result and concluded the 2016-2019 surface water validation is good

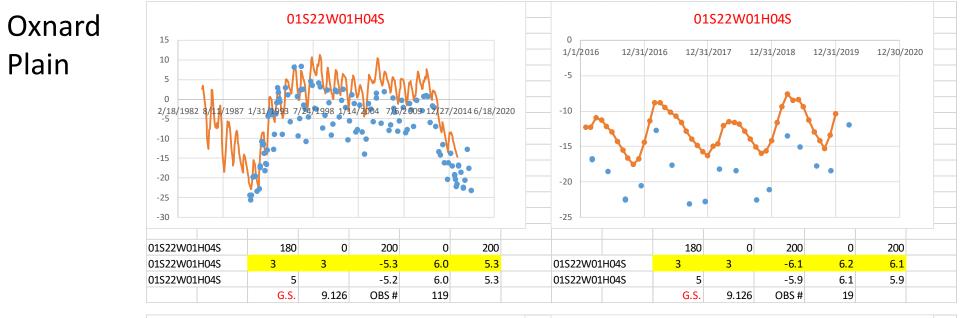

Scatter Plot

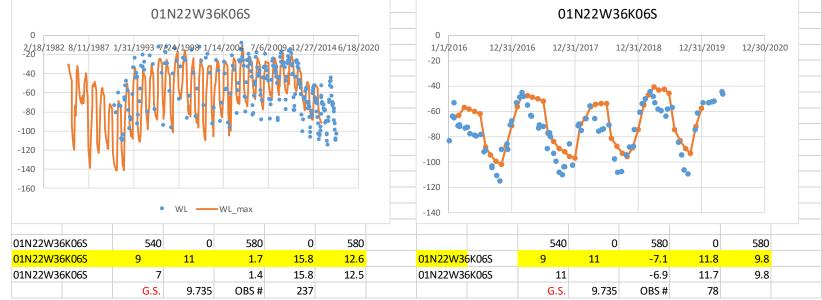
- The overall comparison shows no significant outlier data points in 2016-2019
- The model validation is good

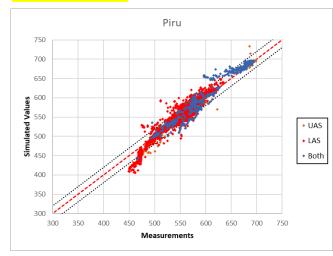


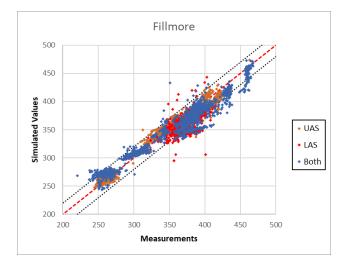
Scatter Plot

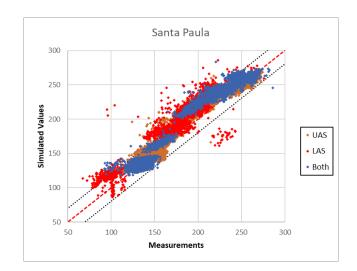

- The overall comparison shows no significant outlier data points in 2016-2019
- The model validation is good

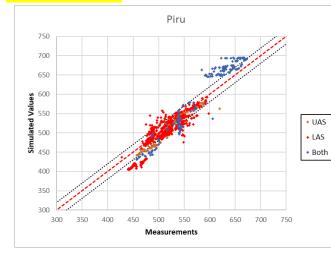


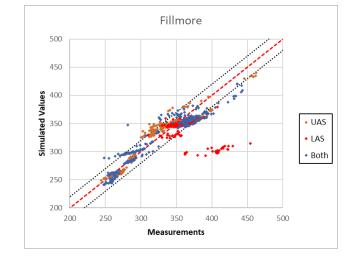


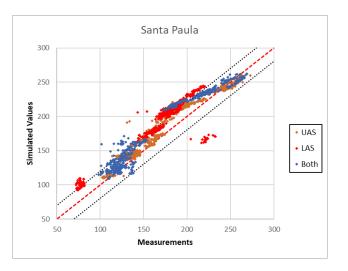

<mark>2016 - 2019</mark>

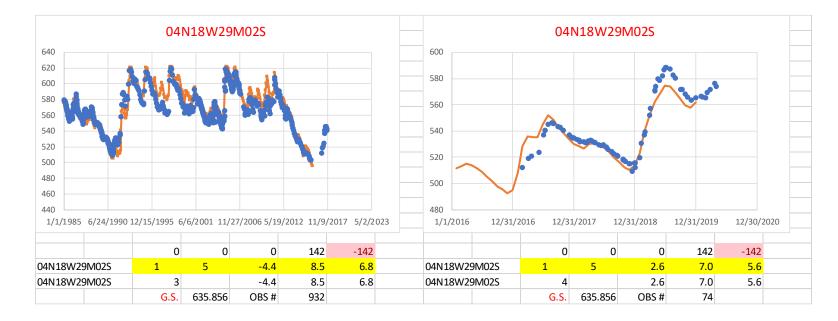


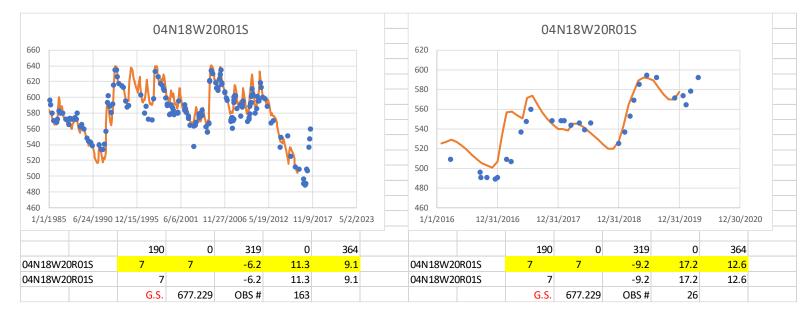


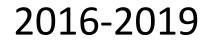

<mark>1985 - 2015</mark>

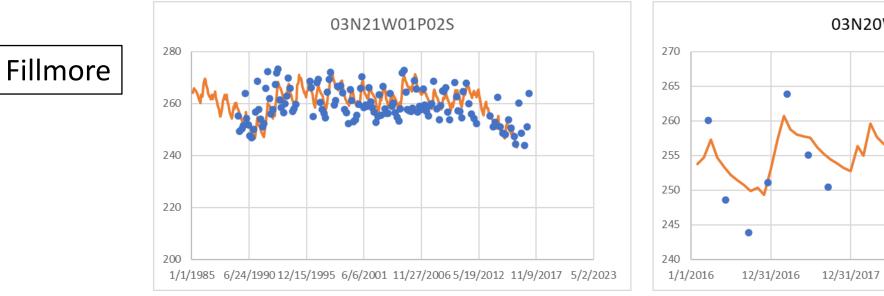


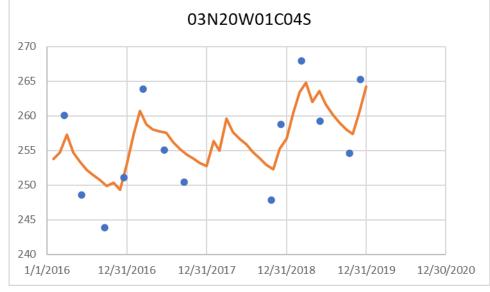


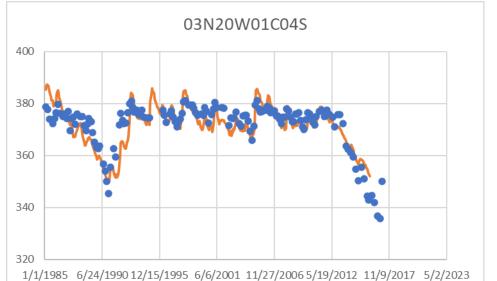

<mark>2016 - 2019</mark>

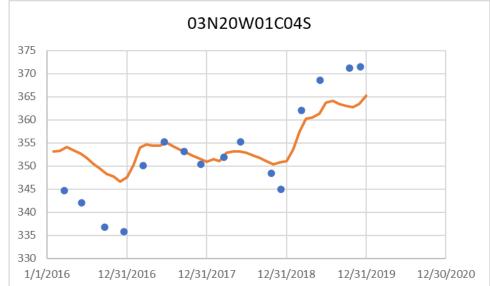


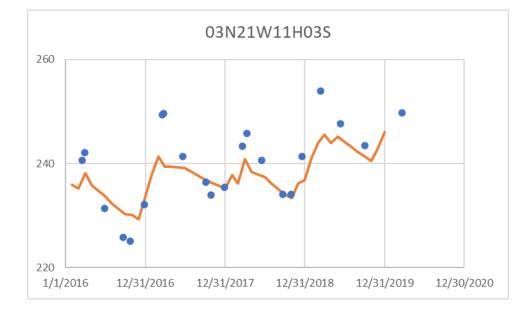


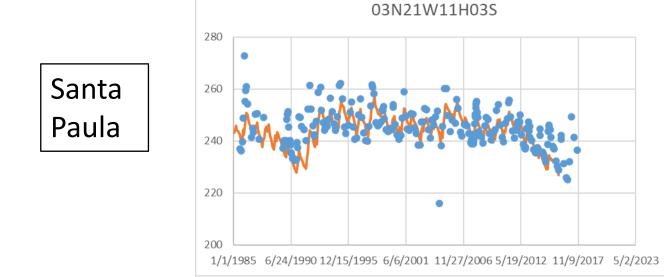




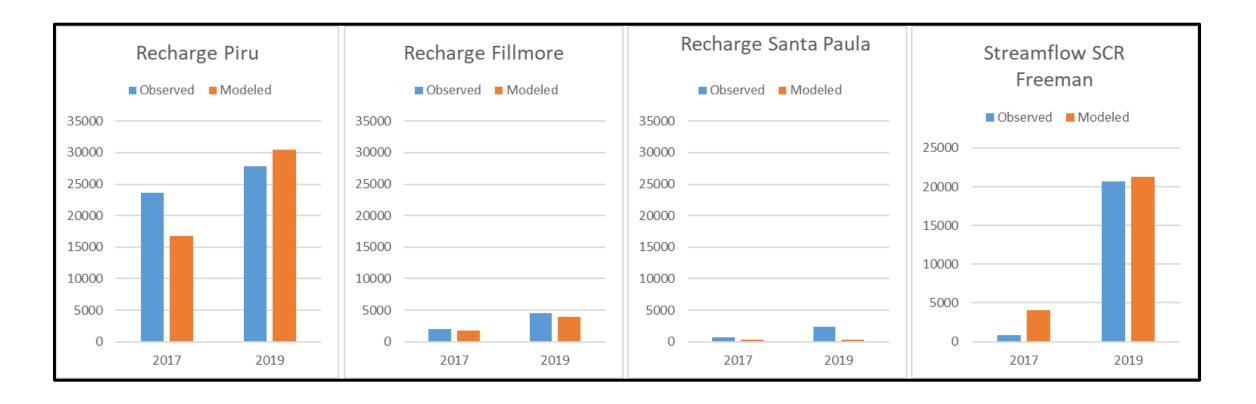


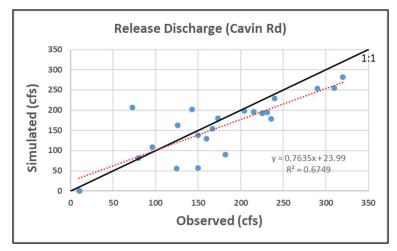

1985-2015



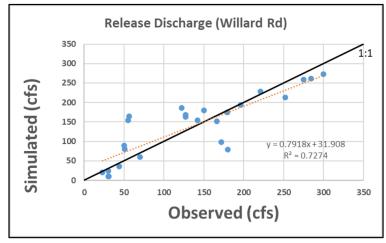


1985-2015

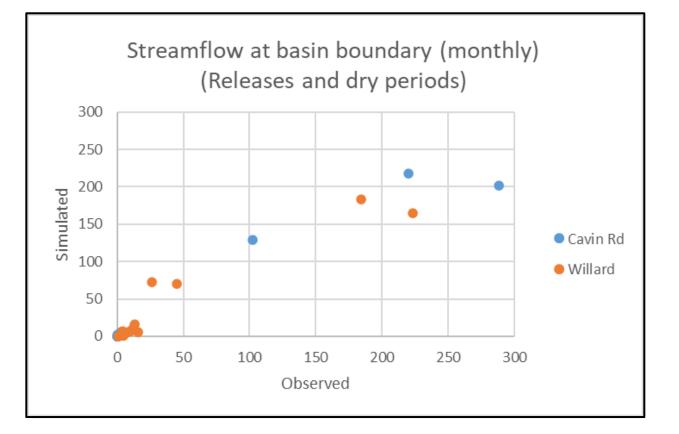

2016-2019



Surface Water

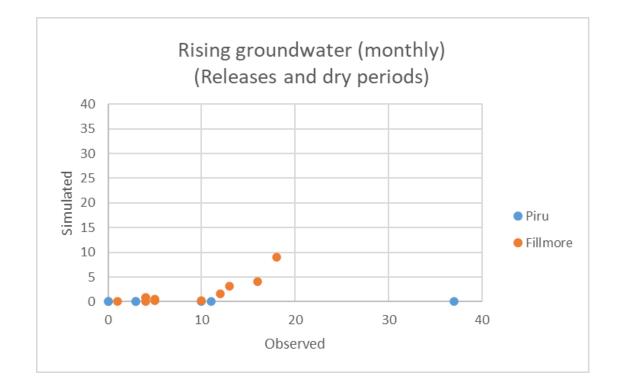

There were 2 releases (2017 and 2019) by UWCD

Stream Flows at Basin Boundary

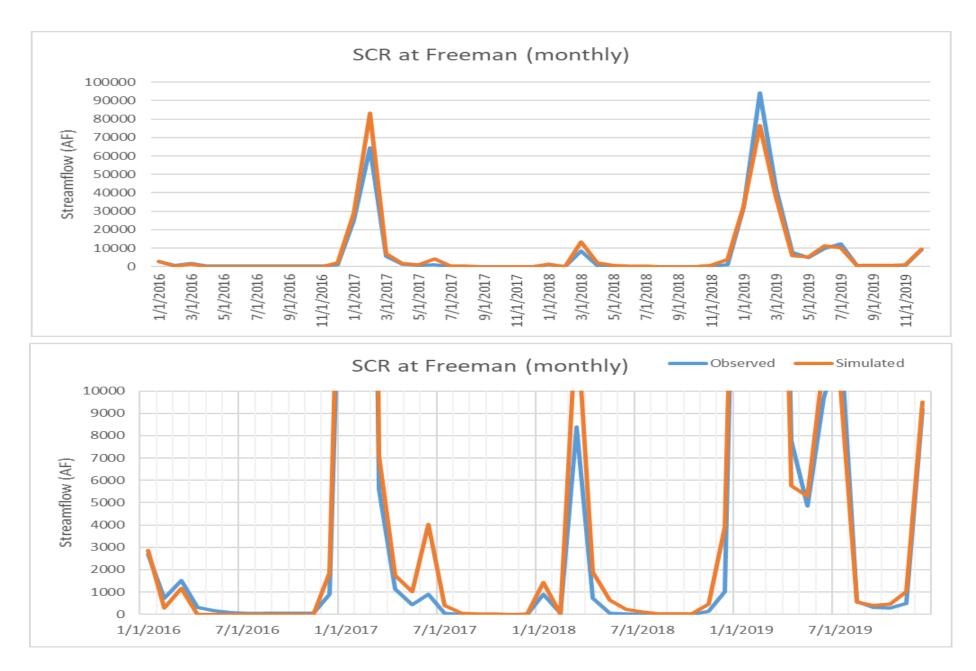


Between Piru and Fillmore Basins

Between Fillmore and Santa Paula Basins

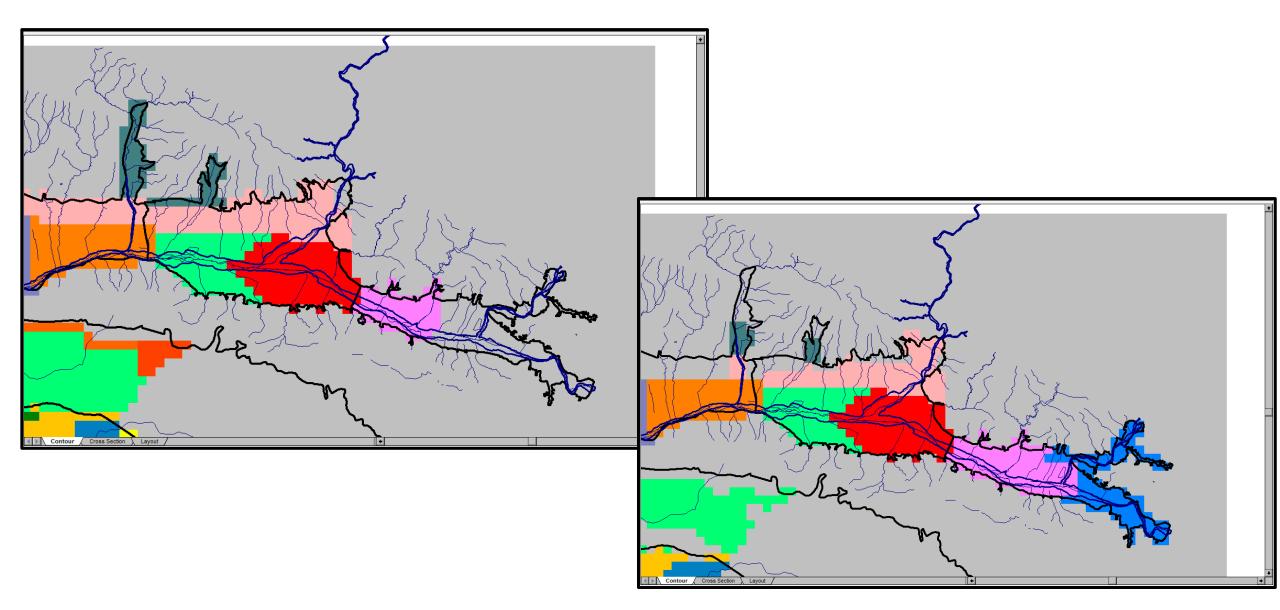

The stream flows at basin boundary are well correlated in 2016-2019

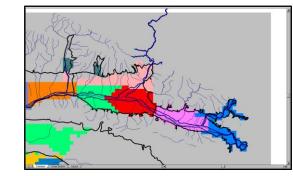
<mark>1985 - 2015</mark>


<mark>2016 - 2019</mark>

Stream Gaining/Losing

- The GW model underestimates the rising groundwater both in 1985-2015 and 2016-2019
- The effect of underestimation on the basin flow budget and GSP analysis is minimal as the stream flows at basin boundary are good
- The rising groundwater is very sensitive to the groundwater level.
- A few feet difference can change stream from rising to losing, and vice versa


Stream Flow at Freeman Diversion


Model Validation

- The model validation is good. No change to the model
- The UWCD Model is now extended to 2019 (1985 to 2019)
- There are model limitations on SCR gaining/losing reaches
- The GW model is adequate for the GSP analysis

Input Parameters

Hydraulic Conductivity

Aquifer System	Hydrostratigraphic Unit	Model Layer						
А	Surficial Deposits and Colluvium	1	10	200	200	600	1200	1200
	Aquitard	2	10	100	0.1	0.1	0.1	0.1
	Recent River Alluvium	3	10	100	100	400	1200	1200
В	Aquitard	4	10	100	100	200	1000	1000
	Older Alluvium	5	10	100	100	200	1000	1000
	Aquitard	6	0.1	1	1	1	1	1
	Upper Saugus	7	5	50	100	100	200	200
С	Aquitard	8	1	1	0.01	0.01	0.01	0.01
	Lower Saugus	9	5	50	100	100	100	100
	Undifferentiated Sedimentary Deposits	10	5	50	100	100	100	100

Unit: FEET/DAY

Ongoing/Future Work

- GSP model simulations for Fillmore, Piru, and Mound GSAs
- Brackish water model simulation
- Model documentation
- Sensitivity Analysis/Uncertainty Analysis
- The groundwater model improvement will continue whenever we have better understanding or more data

Questions/Comments