| SMC | Undesirable
Results | Metric | MT | MO Summa | Comments | |-------------------------|--|--|---|--|---| | GW Elevation | Loss of ability to pump
GW | GW elevation | WL declines below the base
of well screens in more than
25% of representative wells | GW levels at 2011 high WL | maximizes range between MT and MO | | GW Storage
Reduction | inadequate GW storage
to last through multi-
year drought without
GW extraction
limitations | GW elevation | WL declines below the base of well screens in more than 25% of representative wells | GW levels at 2011 high WL | maximizes range between MT and MO | | SW
Depletion | Surface water flow
declines due to GSP
implementation that
interfere with the
beneficial use and users | Rising GW rates at the
Fillmore-Pire basin
boundary (Fish
Hatchery) Depth to
GW at the Fillmore -
Piru basin boundary | No DOM, Minni, IRRIG or REC beneficial users or uses of surface water are materially impacted by implementation of the GSP. GDEs autressed through trigger program. | GW: Havels at 2011 high WL | The GSP does not propose projects or management actions that would change the operational regime of the basins. Therefore, implementation of the GSP does not cause significant and unreasonable effects. | | Land
Subsidence | Land subsidence
amounts that interfere
with infrastructure
operations | Subsidence rates | | Inelastic subsidence rates within +/- 0.05 ft/yr as determined by InSAR | Monitor subsidence amount - InSAR
data from DWR; study to identify
susceptible infrastructure (e.g., long-
span bridges, gravity sewage systems)
for 5 yr GSP update | | Degraded
WQ | Water quality degradation that impairs the beneficial use of the resource | WQ values | Water quality parameters
established in existing or
future regulations | FPBGSA is not a water purveyor and
lacks regulatory authority for WQ
compliance, but will cooperate with
appropriately empowered entities | E | | Seawater
Intrusion | NA | NA | NA | NA | | ## **Guiding Thoughts...** - ✓ GW extractions: - ✓ Do not eliminate rising GW during normal or wet periods - ✓ Do reduce/eliminate rising GW rates during severe drought periods - ✓ Select stream reaches are naturally subject to isolation (i.e., losing reaches upstream and downstream) - ✓ Surface water flows are not naturally maintained along all SCR stream reaches - ✓ A primary water source for GDE areas near the basin boundaries is rising GW - ✓ Droughts are a primary driver for rising GW reductions # **Guiding Thoughts...** #### ✓ Del Valle area - Shallow depth to water - SW supported by effluent from upstream WWTPs - Limited GW extractions in this area - Management actions deemed not necessary ## **Guiding Thoughts...** #### Cienega / Fish Hatchery area - ✓ Rising GW is primary source of SW flows and shallow groundwater - ✓ Future climate change impacts rising GW rates, although the average change is only about 1.3 cfs - ✓ Rising GW rates are totally depleted (zero) during severe droughts even when GW extractions are dramatically reduced (~50%) - ✓ Maintaining rising GW during severe droughts will require GW extractions to be reduced greater than 50%. Massive reductions will impact agriculture, cities (Fillmore, Piru), domestic wells, and disadvantaged communities # **Guiding Thoughts...** ### √ East Valley / Willard Road area - SW (rising GW) not totally depleted during severe droughts - Rising GW rates are decreased during droughts - Refuge area for GDEs during severe droughts # Summary... - ✓ Del Valle no management actions - ✓ Cienega / Fish Hatchery cannot prevent dewatering of shallow GW or material reductions in rising GW (even with extreme pumping reductions) in severe droughts / consider mitigative actions at this location? - ✓ East Valley / Willard Road rising GW reduced by GW pumping but not eliminated / bolster this area as refuge for GDEs in severe droughts? # Possible Mitigative Actions... #### ✓ Cienega / Fish Hatchery - - Support the Cienega project - Financial support - Construction costs - Grant support or assistance - Matching funds - Other support - Letters of support for grant applications - Support other related projects - Arundo removal - Purchase supplemental water # Possible Mitigative Actions... ### ✓ East Valley / Willard Road - - Support the "Lost Creek refuge area" - Monitor SW depths - Background data 6X or 4X/yr - Measure SW depths at 3-4 defined locations - If SW depths less than 50% of norm - add water until norm re-established or trigger no longer applicable ### Water Level - Stream Flow Cross Over Analyses **Willard Road** 35 $y = 3.61696E-53x^{2.08978E+01}$ 30 $R^2 = 8.72783E-01$ Discharge Willard (cfs) 330 340 360 380 WLE well 03N20W01C04(ft) - ✓ Trigger WLE equivalent to 5 cfs at Willard Rd - ✓ Trigger Action FPBGSA staff will survey SW depths at monitoring locations and compare to seasonal norms - ✓ Mitigation Action If SW depths at monitoring locations are less than 50% of norm, then add supplement water to the Lost Creek area from existing well(s)